TRIKOTAJ NUQSONLARINI ANIQLASHDA KONVOLYUTSION NEYRON TARMOQLARI (CNN), QO‘LLAB-QUVVATLOVCHI MASHINA (SVM) VA “RANDOM FOREST” ALGORITMLARINING SOLISHTIRMA TAHLILI
Main Article Content
Abstract
ushbu tadqiqot trikotaj matolaridagi nuqsonlarni aniqlash uchun Konvolyutsion Neyron Tarmoqlari (CNN), Qo‘llab-quvvatlovchi Mashina (SVM) va Random Forest algoritmlarining samaradorligini solishtirmalı tahli qilishga bag‘ishlangan. 5000 ta tasvirdan iborat ma’lumotlar to‘plamida o‘tkazilgan eksperimentlar natijasida CNN modeli 96.8% aniqlik, SVM 89.3% va Random Forest 91.2% natijalarni ko‘rsatgan. Tadqiqot shuni ko‘rsatadiki, yuqori aniqlik talab qilingan vaziyatlarda CNN, hisoblash resurslari cheklangan bo‘lganda esa Random Forest afzalroq hisoblanadi. Ushbu natijalar trikotaj sanoati uchun avtomatlashtirilgan sifat nazorati tizimlarini loyihalashda amaliy ahamiyatga ega.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
A. K. Roy et al., "Global textile market analysis and future perspectives," Textile Progress, vol. 54, no. 2, pp. 85-120, 2022. doi: 10.1080/00405167.2022.2059892
B. Zhang and L. Wang, "Quality control challenges in knitting industry," Journal of Industrial Textiles, vol. 51, no. 3, pp. 445-467, 2021. doi: 10.1177/1528083720987654
S. Chen et al., "Automated visual inspection in textile manufacturing," IEEE Transactions on Industrial Informatics, vol. 18, no. 4, pp. 2345-2354, 2022. doi: 10.1109/TII.2021.3112345
Y. Li and H. Zhang, "Deep learning applications in industrial automation," IEEE Access, vol. 9, pp. 12345-12356, 2021. doi: 10.1109/ACCESS.2021.3082345
K. He et al., "Deep residual learning for image recognition," CVPR, pp. 770-778, 2016. doi: 10.1109/CVPR.2016.90
M. Togashi et al., "Fabric defect detection using multi-scale CNN," Textile Research Journal, vol. 91, no. 7, pp. 789-801, 2021. doi: 10.1177/0040517520962345
X. Li et al., "A novel CNN architecture for textile defect classification," IEEE Transactions on Image Processing, vol. 30, pp. 1234-1245, 2021. doi: 10.1109/TIP.2020.3042345
J. Wang et al., "Machine learning for industrial quality control," Expert Systems with Applications, vol. 186, p. 115678, 2021. doi: 10.1016/j.eswa.2021.115678
L. Zhang et al., "SVM-based fabric defect classification," Journal of Textile Institute, vol. 112, no. 5, pp. 789-798, 2021. doi: 10.1080/00405000.2020.1842345
P. Kumar et al., "Color fastness assessment using machine learning," Color Research and Application, vol. 46, no. 3, pp. 567-578, 2021. doi: 10.1002/col.22678
R. Kumar et al., "Comparative study of deep learning vs traditional ML," Pattern Recognition, vol. 115, p. 107891, 2021. doi: 10.1016/j.patcog.2021.107891
H. Wang et al., "Challenges in automated fabric inspection," IEEE Transactions on Automation Science and Engineering, vol. 19, no. 2, pp. 567-578, 2022. doi: 10.1109/TASE.2021.3082345
S. Kim et al., "Complexity analysis of knitted fabric defects," Textile Research Journal, vol. 92, no. 1, pp. 45-58, 2022. doi: 10.1177/00405175211045678
M. Johnson et al., "Benchmarking datasets for textile inspection," Data in Brief, vol. 38, p. 107345, 2021. doi: 10.1016/j.dib.2021.107345
T. Brown et al., "Limitations of single-algorithm approaches," IEEE Transactions on Industrial Electronics, vol. 69, no. 4, pp. 2345-2354, 2022. doi: 10.1109/TIE.2021.3082345
"TSD-5000: Textile Surface Defects Dataset," IEEE Dataport, 2022. doi: 10.21227/abc1-2345
K. He et al., "Identity mappings in deep residual networks," ECCV, pp. 630-645, 2016. doi: 10.1007/978-3-319-46493-0_38
N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," CVPR, vol. 1, pp. 886-893, 2005. doi: 10.1109/CVPR.2005.177
L. Breiman, "Random forests," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001. doi: 10.1023/A:1010933404324