ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА КОМПОЗИТОВ ПП+АП РЕОЛОГИЧЕСКИЕ И ДЕФОРМАЦИОННО-ПРОЧНОСТНЫЕ ХАРАКТЕРИСТИКИ КОМПОЗИТОВ

Д.Н.Гафуров

Центральный военный клинический госпиталь министерство оборону Республики Узбекистан

Г.Ш.Каримова, Н.Х.Бозорова

Национальный научно-исследовательский институт возобновляемых источников энергии при министерстве энергетики Республики Узбекистан

https://doi.org/10.5281/zenodo.14846878

Аннотация: Горючесть обусловлена высоким содержанием углерода и водорода, из которого состоят макромолекулы полимеров. При нагревании макромолекулярные насыщенные и ненасыщенные углеводороды, которые подвергаются экзотермическим реакциям окисления.

Ключовые слова: полимер, скорость, физико-механические характеристики, макромолекулы, горения, антипирен

PHYSICO-MECHANICAL PROPERTIES OF PP+RF COMPOSITES: RHEOLOGICAL AND DEFORMATION-STRENGTH CHARACTERISTICS OF COMPOSITES

Abstract: Combustibility is due to the high content of carbon and hydrogen, which make up the polymer macromolecules. When heated, macromolecular saturated and unsaturated hydrocarbons undergo exothermic oxidation reactions.

Keywords: polymer, speed, physical and mechanical properties, macromolecules, combustion, fire retardant

ВВЕДИТЕ

Горючесть — это комплексная характеристика материала или конструкции — определяет способность материала загораться, поддерживать и распространять процесс горения. Она характеризуется следующими величинами — температурой воспламенения или самовоспламенения, скоростью выгорания и распространение пламени по поверхности а также условий, при которых возможен процесс горения.

Горючесть обусловлена высоким содержанием углерода и водорода, из которого состоят макромолекулы полимеров. При нагревании макромолекулярные насыщенные и ненасыщенные углеводороды, которые подвергаются экзотермическим реакциям окисления.

ОСНОВНУЮ ЧАСТЬ

Горение полимеров представляет собой очень сложный физико-химический процесс, включающий химические реакции при деструкции полимера, а также химические реакции превращения и окисления газовых продуктов, с интенсивным выделением и уносом массы вещества.

При горении органических полимерных материалов окислителем является кислород воздуха, а горючим — водород и углеродсодержащие газообразные продукты деструкции полимера. При горении полимеров наблюдаются также критические явления, характерные вообще для процессов горения. Снижение температуры пламени по тем или иным

причинам приводит к скачкообразному переходу от одного режима окисления – горения – к другому к очень медленному окислению.

Полипропилен широко используется в производстве изделий технического назначения благодаря высокой химической стойкости, достаточно высоком прочностным характеристикам, но в ряде случаев ограничением является недостаточная огнестойкость как самого полимера, так и композиций на его основе [1].

Одним из основных способов снижения горючести является введение антипиренов добавок, вводимых непосредственно при формовании изделий [2].

В настоящее время имеются предложения различных фирм производя ионные материалы содержат только данные, связанные предполагаемым снижением показателей горючести, и практически не имеют данных об изменении технологических и эксплуатационных показателей получаемых композиционных материалов. В связи с этим исследование влияние антипиренов добавок на свойства исходного полимера является актуальной задачей.

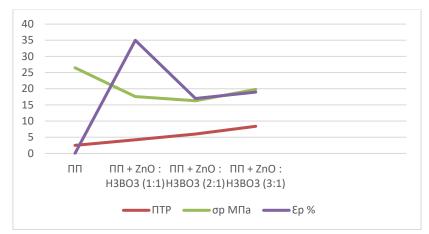
Целью настоящего исследования являлось установление зависимости между содержанием антипиреновой добавки, горючестью, технологическими и эксплуатационными характеристиками получаемых композиционных материалов на основе полипропилена и определение оптимального состава.

В качестве объектов исследования выбраны:

- полипропилен (ПП);
- антипиренов добавки (АД) для полипропилена.

Введение добавок проводилось путем механического смешивание в барабанном смесителе с последующим экструдированные композиции на лабораторном экструдере фирмы "Brabender" и гранулированием.

Для полученных композиций проводилось определение технических показателей: ПТР и деформационной – прочностных характеристик.


Повышение содержания АП в полимерной матрице до 50,0 масс % приводит к охрупчиванию материала. Такое влияние соединений бора на композиты, по видимому, является следствием структурных изменений в полимерной матрице. Введение H_3BO_3 , B_2O_3 превышающее значений 10,0 масс % вызывают разрыхление полимерной матрицы в результате ослабления межмолекулярного взаимодействия и когезионных сим: А чем меньше взаимодействие, тем меньше надмолекулярных структур, которые при растяжении ориентируются, что усиливает вклад в прочность межмолекулярных связей.

Характеристикой практической значимости для полимерных материалов служит показатель текучести расплава. По изменению показателя текучести расплава можно судить о структурных и реологических изменениях, происходящих в полимерной матрице после введения антипиренов.

Таблица 1. Физико-механические свойства прессованных композитов на основе НП и ZnO: H₃BO₃

Образцы	ПП	ПП + ZnO : H ₃ BO ₃ (1:1)	ПП + ZnO : H ₃ BO ₃ (2:1)	ПП + ZnO : H ₃ BO ₃ (3:1)
ПТР	2,5	4,2	6,0	8,4
σ _р МПа	26,5	17,6	16,3	19,8
Ep %	>550	35	17	19

Исследования зависимости ПТР и ПП от концентрации антипиренов показали, что добавки значительно влияют на вязкость расплава полимеров (таблица 1).

Рис. 1. Зависимость ПТР композитов ПП+АП от содержания ПП + ZnO : H3BO3 (1:1)

 $\Pi\Pi + ZnO : H3BO3 (2:1), \Pi\Pi + ZnO : H3BO3 (3:1)$

Как видно из рис.1. введение H_3BO_3 в ПП в количестве до 10,0 масс % приводит к постепенному увеличению вязкости расплава полимера.

При увеличении концентрации до 50,0 масс % происходит снижение вязкости. В свою очередь для композитов ПП + H_3BO_3 зависимость носит иной характер.

ЗАКЛЮЧЕНИЕ

В частности, значение ПТР композитов ПП + 1,0% H_3BO_3 ниже, чем у исходного полимера. Дальнейшее увеличение содержания H_3BO_3 композитах ПП + H_3BO_3 до 10% приводит к росту значений ПТР, после чего с увеличением концентрации антипирена до 50,0 % по массе происходит постепенное снижение вязкости расплава. Это объясняется различным поведением добавок в полимерной матрице, т.е. снижение значений ПТР объясняется образованием различных структур, имеющих более плотную упаковку, повышение же значения вязкости может свидетельствовать о нарушении структуры полимерной матрицы.

Литература

- 1. Асеева З.И. Заиков Г.Е. Горения полимерных материалов.-М.:Наука-1981.-с280
- 2. Бушев В.П. Огнестойкость зданий .-М.:Стройиздат.-1970.-258с
- 3. Кодолов В.И. Горючесть и огнестойкость полимерных материалов.-М:Химия.-1976.-158c
- 4. Бюллер К.У. Тепло-и термостойкие полимеры. М.: Химия 1984.-1056с.
- 5. Тураев Э.Р. Получения изделий из ПЭВД со стабильными физико-химическими свойствами //Дисс. к.т.н Москва 2010г. С.11-12
- 6. Бозорова Н.Х., Тураев.Э.Р., Джалилов А.Т. Влияние атомов Zn|Ni на свойства полипропилена // Universum: Технические науки: электрон. научн. журн. 2020 г. № 7 (76). -C. 9-12. (02.00.00., № 2)